氢致高强度耐磨板延迟断裂行为分析(二)

  微观组织的影响。由于氢在不同组织中的扩散速度和储存能力不同,因此,材料的微观组织对延迟断裂敏感性的影响很大。从金相组织上讲,相比于奥氏体和全珠光体组织,铁素体—马氏体和单一马氏体组织钢材具有更高的氢致延迟断裂敏感性。此外,相同的应力水平下,加工诱发马氏体的含量越高,延迟断裂敏感性越大;在相同的强度水平下,含Mo的高温回火马氏体组织,比普通回火马氏体钢的极限扩散氢含量高,延迟断裂敏感性降低。同时,材料微观组织上的不均匀性,如晶界、相界等,由于原子错排和局部应力场的存在,会成为氢的捕获陷阱或氢快速传输的通道,从而影响材料的氢致延迟开裂行为。此外,降低晶粒尺寸,晶界处吸附的氢含量减少,也有利于改善材料沿晶界开裂的敏感性。

  加工缺陷的影响。高强度耐磨板的加工会经历弯曲、拉拔、冷轧等工艺,不同的加工方式会在材料上留下微孔、微裂纹和位错等缺陷,这些缺陷位置会成为氢的捕获陷阱或者提供氢原子快速传输的通道,在外力作用下还会在缺陷位置形成应力集中,它们会对材料的氢致延迟开裂行为产生较大的影响。

  受力状态的影响。一方面,金属构件在服役过程中会受到各种外力的作用;另一方面,材料本身也会因为不同的加工成型过程而产生不同的残余应变状态。高强度耐磨板的主要成型工艺有折弯、扩孔和翻边、浅拉伸等,这些加工残余应变的存在会促进延迟断裂的发生。最新研究认为,加工过程中产生的残余应变是外加应力和材料中的可扩散氢含量之外的第三大导致高强度耐磨板延迟断裂失效行为发生的重要因素,氢致延迟断裂行为发生的敏感区处于高外加应力、高应变和高浓度扩散氢含量的重合区。

  环境的影响。环境主要是会影响氢向金属材料内部的渗透。金属在各种致氢环境中,如氢气、H2S气体和水溶液、水介质、丙酮等有机溶液中,氢致延迟断裂敏感性会大大增加。根据环境中氢来源的不同,高强度耐磨板的氢致延迟断裂行为主要分为以下两类:一类是服役环境渗入的氢(外氢)引起的延迟断裂,如桥梁用高强度耐磨板,在潮湿大气、雨水等环境中长期暴露发生腐蚀,由腐蚀反应生成的氢侵入钢中而发生延迟断裂。另一类是酸洗、电镀、焊接等制造过程中侵入钢中的氢(内氢)引起延迟断裂。以焊接为例,它是一个局部冶炼过程,局部高温可使焊条及药皮中所含的水分分解成氢原子进入金属。这些过程引入的氢含量较高,因此,钢材常常在施加应力后的几小时或几天内即发生延迟断裂失效。

  氢致延迟断裂机理

  关于氢致延迟断裂的机理,近年来已经进行了广泛的研究,但问题还远远没有解决。已经提出的经典理论主要有:氢压理论、氢降低表面能理论、氢降低原子键合力理论,以及氢促进局部塑性变形理论等。

  氢压理论、氢降低表面能理论和氢降低原子键合力(即弱键)理论均认为,氢致裂纹的产生和扩展是原子面在正应力作用下的整体解理过程,即氢致脆性的过程。与此相反,氢致局部塑性变形理论则认为任何断裂过程都是局部塑性变形的结果。该理论认为,在存在应力梯度的条件下,如裂纹尖端附近,由于应力诱导扩散,原子氢能富集在裂纹尖端局部区域。当有效氢浓度达到临界值时,可以使局部区域的表观屈服应力明显下降,于是在较低的应力作用下就能产生氢致滞后塑性并导致滞后断裂,而且局部区域表观屈服应力的下降量明显依赖于钢的强度和初始氢含量。

  总体来讲,上述4种经典理论都有其局限性,将氢促进局部塑性变形理论和弱键理论、氢压理论联合起来,是今后研究的一个方向,有可能发展新的氢致开裂理论以解释氢致韧断和氢致韧脆转变机理。

链接:氢致高强度耐磨板延迟断裂行为分析(一)
链接:氢致高强度耐磨板延迟断裂行为分析(三)